یادداشتی بر نگاشت های جمعی حافظ طیف روی c*- جبرها
Authors
abstract
متیو و رادی [14] ثابت کردهاند که اگر ایزومتری طیفی یکانی از c*- جبر یکدار a به روی c*- جبر یکدارb از نوع i با فضای ایدهآل هاسدورف و کلاً ناهمبند باشد، آنگاه جردن ایزومورفیزم است. در این یادداشت نشان میدهیم که اگر یک نگاشت جمعی پوشا و حافظ طیف باشد، آنگاه جردن ایزومورفیزم است بدون فرض اینکه کلاً ناهمبند باشد.
similar resources
نگاشت های حافظ ضرب روی c^*-جبرها
فرض کنید a و b ، -c^*جبر باشند و x یک باناخ a-دومدول اساسی باشد و همچنین t:a→b و s:a→x نگاشت های خطی پیوسته باشند که t پوشا است. اگر برای هر a,b∈a a که ab=ba=0 داشته باشیم t(a)t(b)+t(b)t(a)=0, s(a)b+bs(a)+as(b)+s(b)a=0 مطالعه می کنیم که t=ωφ و s=d+? هستند که w در مرکز جبر ضربگر b قرار دارد و ∅:a→b بروریختی جردن می باشد و d:a→x مشتق ...
نگاشت های خطی حافظ طیف موضعی روی mn (c)
در سال های اخیر توجه بسیاری با مسایل پایایی خطی شده است. هدف این است که تابع های خطی میان جبرهای باناخ را که حافظ ویژگی خاصی هستند به طور مطلوبی دسته بندی کنیم. یکی از معروف ترین مسایل در این راستا مسئله ی کاپلانسکی است: آیا هر نگاشت خطی پوشا میان دو جبر باناخ نیم ساده که وارون پذیری را حفظ می کند، یک همریختی جردن است؟ در فصل اول مقدمات و پیش نیازهای مورد نیاز از آنالیز تابعی و جبر خطی را می ...
15 صفحه اولنگاشت های جمعی حافظ ضرب جردن صفر روی جبرهای عملگرها
اگر ? نگاشت جمعی پوشا بین دو جبر عملگری باشد که در رابطه خاصی صدق می کند تحت شرایط خاص نشان می دهیم ? یک همومورفیسم جردن ضرب شده با یک عضو مرکزی است. در حالت خاص اگر k و h دو فضای هیلبرت با بعد نامتناهی(حقیقی یا مختلط) باشند(a=b(hو(b=b(kآنگاه عدد ثابت غیر صفر c و نگاشت وارونپذیر خطی یا مزدوج خطی u از h به k وجود دارند که در شرط خاصی صدق می کند.
15 صفحه اولنگاشت های تقریباً حافظ طیف
فرض کنیم x و y فضاهای باناخ ابربازتابی و (b(x و (b(y به ترتیب جبرهای باناخ عملگرهای خطی و کراندار روی x و y باشند. اگر (p? b(x) -> b(y یک نگاشت خطی و دوسویی تقریباً حافظ طیف باشد، در این صورت p یک عملگر تقریباً ضربی یا یک عملگر تقریباً پادضربی است. علاوه براین، اگر y = x یک فضای هیلبرت تفکیک پذیر باشد، چنین نگاشتی اختلال کوچکی از یک خودریختی یا یک پادخودریختی خواهد شد. همچنین، پیوستگی خودکار چنین ...
نگاشت های حافظ رتبه 1 روی *c- مدول های هیلبرت
یک *c -مدول هیلبرت روی یک *c-جبر a یک مدول چپ m همراه با یک ضرب داخلی روی a است که در مولفه ی اول خطی ودر مولفه دوم مزدوج خطی است به طوری که m با نرم تعریف شده از ضرب داخلی یک فضای باناخ است.مساله حافظ رتبه یک مساله اساسی در مطالعه مسائل حافظ خطی است. *c-مدول های هیلبرت ابتدا توسط کاپلانسکی در سال 1953 به منظور اثبات درونی بودن اشتقاق های روی *aw-جبرها به کار گرفته شد.او ضرب داخلی فضاهای هیلبرت...
15 صفحه اولنگاشت های تقریبا حافظ تعامد روی *c- مدول ها
در این پایان نامه به مطالعه ی نگاشت های حافظ تعامد و تقریبا حافظ تعامد در - مدول های فضای ضرب داخلی می پردازیم . درحالت خاص اگر a ،w,v - مدول های ضرب داخلی روی *c- جبر a باشند هر مضرب اسکالر از یک ایزومتری a- خطی، یک نگاشت حافظ تعامد a- خطی خواهد بود . عکس این مطلب در حالت کلی برقرار نمی باشد ولی در حالتی که aشامل k(h) باشد عکس آن برقرار خواهد بود) k(h) بیانگر c* - جبر همه عملگرهای فشرده روی یک...
15 صفحه اولMy Resources
Save resource for easier access later
Journal title:
پژوهش های نوین در ریاضی (علوم پایه سابق)جلد ۲، شماره شماره ۶، صفحات ۵-۹
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023